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Abstract
Optical coherence tomography (OCT) is a non-invasive medical imaging technology that is playing an increasing role in the
routine assessment and management of patients with neuro-ophthalmic conditions. Its ability to characterise the optic nerve
head, peripapillary retinal nerve fibre layer and cellular layers of the macula including the ganglion cell layer enables
qualitative and quantitative assessment of optic nerve disease. In this review, we discuss technical features of OCT and OCT-
based imaging techniques in the neuro-ophthalmic context, potential pitfalls to be aware of, and specific applications in more
common neuro-ophthalmic conditions including demyelinating, inflammatory, ischaemic and compressive optic
neuropathies, optic disc drusen and raised intracranial pressure. We also review emerging applications of OCT angiography
within neuro-ophthalmology.

Introduction

Optical coherence tomography (OCT), a quick and repro-
ducible imaging technique using low coherence inter-
ferometry to produce cross-sectional images of the retina
and optic nerve head (ONH), has become one of the most
valuable tools employed in the assessment of ophthalmic
patients. Alongside advances in technology, its application
in the field of neuro-ophthalmology specifically continues
to expand.

OCT allows non-invasive visualisation of the anatomy of
the most anterior part of the visual pathway, from retina to
lamina cribrosa. Lesions involving the pre-laminar area can
be assessed with spectral domain (SD-OCT) and enhanced
depth imaging OCT (EDI-OCT) of the ONH. Beyond this,
afferent visual pathway lesions involving the optic nerve,
chiasm or tracts can lead to visible axonal loss caused by
direct retrograde axonal degeneration. OCT imaging can

capture and quantify axonal loss through measurements of
retinal nerve fibre layer (RNFL) thickness, and neuronal
damage through measurements of ganglion cell layer (GCL)
or combined ganglion cell layer-inner plexiform layer
(GCIPL) thickness. The strict anatomical structure of the
retina and maintenance of retinoscopic organisation with the
afferent visual pathway [1], as described in Table 1,
increases the utility of OCT in evaluating central nervous
system pathology.

In this review, we discuss the imaging parameters useful
in the assessment of neuro-ophthalmic conditions, pitfalls to
be aware of, and describe specific neuro-ophthalmic con-
ditions where OCT imaging can help with diagnosis,
management and follow-up.

Imaging the optic nerve head (ONH) and
peripapillary retinal nerve fibre layer (pRNFL)
thickness

OCT imaging of the ONH can be undertaken in two or three
dimensions (2D or B-scan and 3D or volume scan). The
OCT software can construct an ONH topographical map
(Fig. 1) which can be used to quantify parameters such as
ONH diameter, depth and diameter of the central cup, and
thickness of the neuroretinal rim. Qualitative assessments
can also be made of structural abnormalities such as optic
nerve pits, tumours, optic disc drusen (ODD) and choroidal
neovascularisation (CNV). EDI-OCT is beneficial for ana-
lysing the deeper structure of the ONH up to the level of the
lamina cribrosa.
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The peripapillary retinal nerve fibre (pRNFL) thickness
is a measure that can be used to quantify axonal integrity in
pathological processes involving the optic nerve. Technical
details are outlined in Table 2. Figure 2 shows an example
of a pRNFL report. Normal global average pRNFL thick-
ness is ~105 μm with an estimated physiological loss due

to aging of about 0.017% per year from age 18 years
onwards, equating to a 10- to 20-μm loss over a period of 60
years [2].

Imaging the macula and macular ganglion cell-inner
plexiform layer (mGCIPL) thickness

Aside from detailed visualisation of macular structure,
macular OCT scans offer the possibility to conduct manual
and automated segmentation analysis of macular ganglion
cell layer (mGCL) and inner plexiform layer (mIPL) den-
sities. Technical details are outlined in Table 2. Figure 3
shows an example of a mGCL thickness map report. Both
mGCL and combined mGCIPL thickness values have
revolutionised the evaluation of optic neuropathies.

Pitfalls to be aware of in OCT assessment

As with any technology, there are limitations, pitfalls and
potential errors that must be considered, especially when
using derived measurements in clinical decision-making.
Foremost, different OCT machines have different mea-
surement protocols and so patients must be reviewed on the
same machine using the same scanning protocol for accu-
rate longitudinal comparisons to be made. Secondly, all
OCT measurements are compared to a normative database.
Often these normative databases are made up of Caucasian
middle-aged subjects, and as such this must be considered
when evaluating measurements from a patient not in this
demographic, for example a child or a patient of different
ethnicity.

Interpretation of automated OCT measurements need to
take into account potential artefacts. The centre of the fovea
on OCT may differ from the retinal locus of fixation [3, 4]
and deviations of 60 ± 50 μm between fixation and the

Table 1 Anatomy of the anterior visual pathway.

Light energy reaching retina is converted by photoreceptors into an
electrochemical signal

Signal is relayed to retinal ganglion cells via bipolar, horizontal and
amacrine cells

Axons of ganglion cells travel in retinal nerve fibre layer (RNFL) and
converge at optic nerve head (ONH):
- Foveal ganglion cell axons travel to temporal aspect of optic nerve
in papillomacular bundle (caeco-central projections)

- Temporal ganglion cell axons form arcuate bundles that travel
above and below the fovea, crossing the horizontal meridian in a
small delta area behind the foveola, finally entering the
superotemporal and inferotemporal aspects of the optic nerve

- Nasal ganglion cell axons enter the nasal portion of the optic nerve

Retinal ganglion cell axons travel posteriorly through the lamina
cribrosa where they become myelinated and are called the
optic nerve

Distal to proximal rearrangement of positions of the ganglion cells
axons occurs in the first section of the optic nerve:
- Macular ganglion cell axons move to the optic nerve centre
- Peripheral temporal fibres become positioned more temporally,
both superior and inferior to the macular fibres

- Nasal fibres remain in the nasal past of the optic nerve

The two optic nerves reach the optic chiasm, typically located 10 mm
above the pituitary gland, in the sella turcica within the
sphenoid bone

Decussation of axons from the optic nerves takes place in the chiasm

Each optic tract contains axons from the ipsilateral temporal retina
and the contralateral nasal retina

Fibres synapse in the ipsilateral lateral geniculate nucleus (LGN)

Fig. 1 Horizontal spectral-domain optical coherence tomography
(SD-OCT) B-scan images of the optic nerve head (ONH) in a
healthy 33-year-old female referred for assessment of non-
pathological retinal pigmentary changes. The diameter of the
optic disc is defined as the distance between the edges of the retinal
pigment epithelium (RPE). The perpendicular orientation of the retinal

nerve fibre layer (RNFL) is lost as the nerve fibres blend with the optic
nerve head. BM Bruch’s membrane, EZ ellipsoid zone, ELM external
limiting membrane, ILM internal limiting membrane, CC chor-
iocapillaris, OS outer segment, IS inner segment, ONL outer nuclear
layer, OPL outer plexiform layer, INL inner nuclear layer, IPL inner
plexiform layer, GCL ganglion cell layer.

N. Minakaran et al.



www.manaraa.com

centre of the foveal avascular zone can occur [5]. For cor-
rect analysis, accurate placing of the measurement area
should be checked and amended manually if necessary [6].

OCT segmentation software algorithm automatically
detects the pRNFL and mGCIPL. In some cases, particu-
larly in eyes with ocular pathology or in scans of poor
image quality, the software can fail. Again, manual cor-
rection should be done to improve the accuracy and
reproducibility of the measurements [6]. This may not be
possible with severe retinal pathology. The introduction of
eye tracking and retest software has improved reproduci-
bility of RNFL measurements [7].

Repeatability of automated segmentation measurements
has been demonstrated to vary across different OCT devices
and depends on the specific scan protocol and algorithm
software updates [8]. As described earlier, patients should
be monitored consistently using similar OCT methodolo-
gies. The presence of ocular disorders and poor visual
acuity may result in fixation errors and induce measure-
ments that appear variable over time [9]. Likewise, assess-
ment of retinal thickness should be limited to the area
encircling the parafoveal macular rim [10].

The importance of distinguishing artefacts from true
pathological changes cannot be understated, not only to
ensure optimum patient care but also to avoid invasive and
costly investigations.

Neuro-ophthalmic conditions

Multiple Sclerosis (MS) and demyelinating optic neuritis
(MSON)

The earliest use of OCT in neuro-ophthalmology was in
1999 where Parisi and colleagues reported pRNFL thinning
on OCT in MS patients with previous MSON [11]. In the

acute phase of MSON, ONH swelling due to axoplasmic
flow stasis in the inflamed optic nerve may be demonstrated
on OCT and the elevated pRNFL measurements used to
objectively quantify the swelling [12]. pRNFL thickening
may also be seen in MSON where there is no clinically
evident ONH swelling, and this may be useful in detecting
optic neuritis flares in clinic [13]. Typically, 3 months after
the acute episode of MSON, pRNFL atrophy develops
which again can be quantified using OCT measurements
demonstrating pRNFL thinning, most evidently in the
temporal pRNFL region [14].

Due to the potentially elevated pRNFL measurements
initially, followed by thinning some weeks to months later,
it can be challenging to rely on pRNFL thickness to track
structural changes in axonal integrity. Furthermore, there is
an OCT floor effect, whereby mean pRNFL values do not
generally reduce below 30 μm regardless of extent of optic
nerve injury, making it difficult to detect appreciable change
in severe optic atrophy or recurrent optic neuritis [15].
OCT-mGCL or mGCIPL volume and thickness analysis has
been shown to be a more sensitive and reliable measure of
retrobulbar neuroaxonal injury. mGCIPL thinning occurs
earlier in the time course of acute ON (after about 2 weeks),
even whilst the RNFL remains oedematous, thus providing
an early indication of retinal ganglion cell dropout and
possible permanent visual dysfunction [16]. Whilst lower
pRNFL values have been shown to correlate with reduced
visual acuity, contrast sensitivity, visual field mean sensi-
tivity and colour vision mean testing scores [17, 18],
mGCIPL thickness correlates better with these measures of
visual dysfunction, as well as quality of life measures,
disability and MRI findings [19, 20]. Overall OCT is helpful
for prognostication after MS-related relapses.

MS patients can experience substantial subclinical dis-
ease activity, and even in the absence of clinical MSON

Table 2 Technical details of OCT parameters used in the assessment of neuro-ophthalmic patients.

Peripapillary retinal nerve fibre (pRNFL) thickness analysis Macular ganglion cell (mGCL) /inner plexiform layer (mIPL)
thickness analysis

Circular cross-sectional retina scan obtained at diameter of 3.4–3.5
mm, centred around the optic nerve head (ONH)

Retinal layer segmentation required – different OCT manufacturers
use different methods

Spectralis SD-OCT (Heidelberg Engineering, Heidelberg,
Germany): average pRNFL thickness displayed in four quadrants.
Temporal, superior, nasal and inferior and sectoral thicknesses are
measured at each of the 12 clock-hours or in 16 equal sectors

Spectralis SD-OCT: offers possibility of conducting automated
segmentation of perifoveal volumetric macular scans, (usually 49
B-scans 30 microns apart, 1024 A scans). Separately segments
mGCL and mIPL

Cirrus HD-OCT (Carl Zeiss Meditec, Jena, Germany): deviation
map generated where RNFL measurements are compared at each
pixel with age-matched normative database, and location under
lower 95% of normal range highlighted. Quantitative optic nerve
head parameters are provided in the centre panel of the scan report

Cirrus HD-OCT: acquires an ellipse centred on the fovea with a
vertical radius of 2 mm and horizontal radius of 2.4 mm, providing
a combined measurement of mGCL and mIPL

Other devices display the RNFL thickness as colour-coded
thickness maps of the entire peripapillary region (useful in the
assessment of small, localised areas of thinning outside the
sampling location)

RTVue OCT (Optovue, Fremont, US) captures a 7 mm2 area
centred 1 mm temporal to the fovea. Ganglion cell complex (GCC)
measurements can be made (RNFL+GCL+ IPL)

Optical coherence tomography (OCT) in neuro-ophthalmology
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events, can develop progressive pRNFL and mGCIPL
thinning [21, 22]. A meta-analysis comparing 1,667 MSON
eyes and 4,109 MS non-ON eyes to 1,697 eyes from
healthy control subjects found significant pRNFL and
mGCIPL thinning in both MSON eyes (mean difference

−20 μm and −16 μm respectively) and MS non-ON eyes
(mean difference −7 μm and −6 μm respectively) relative to
control eyes [23]. Without additional MRI or electrodiagnostic
data, the meta-analysis cannot conclude whether the finding in
the MS non-ON eyes is a manifestation of a primary

Fig. 2 Spectral-domain optical coherence tomography (SD-OCT)
peripapillary retinal nerve fibre layer (pRNFL) report in a healthy
asymptomatic 27-year-old female. The RNFL thickness falls within

normal range in all segments (TMP temporal, SUP superior, NAS
nasal, INF inferior).

N. Minakaran et al.
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neurodegenerative component of MS, or whether it is due to
retrograde transsynaptic degeneration from pathology of the
posterior visual pathway. These data come from smaller sized,
multimodal cohort studies and case reports [24]. However, the
finding does suggest that OCT could be used in the measure-
ment of disease activity in MS, potentially reducing the need
for frequent MRIs. This is further supported by the fact that
reduced pRNFL and mGCIPL values have been shown to
correlate with other surrogate markers used to monitor disease
activity such as MRI-measured brain atrophy [25, 26], spinal
cord lesions [27] and neurological disability scores [25, 26, 28–
30]. Figure 4 demonstrates findings in an MS patient with post-
chiasmal demyelination with mGCL density measurements
mirroring the visual field defect.

Microcystic macular changes detected on retinal OCT
has been a recent area of interest since first reported in
patients with demyelinating optic neuropathy in 2012 by
Gelfand et al. [31]. Small hyporeflective spaces within the
inner nuclear layer (INL) in the parafoveal region of the
fovea are characteristic, with sparing of the fovea itself,
which would otherwise be involved in vascular leakage.
Microcystic macular changes and thickening of the INL
have been shown to be associated with disease activity and
worse disability in MS [32]. However, microcystic macular
change is not unique to MS and can be observed across a
variety of optic neuropathies, including non-inflammatory
aetiologies such as compressive optic neuropathy [33]. With
several studies showing no corresponding dye leakage on
fluorescein angiography [34, 35], it is likely that these
changes are due to retrograde axonal degeneration and that
loss of retinal Müller cell function plays a role in microcyst
formation [36]. The literature uses the terms ‘microcystic
changes’, ‘retrograde maculopathy’, ‘microcystic macular
oedema (MMO)’, and microcystic macular edema (MME).
None of these terms distinguish transient from permanent

changes. Terminology and understanding of this novel
observation are still evolving.

Neuromyelitis Optica Spectrum Disorder (NMOSD)

Whilst pRNFL and mGCIPL thinning is typical in optic
neuritis generally, the degree and pattern of loss may help
with differentiating underlying aetiology. It has been
shown that ON related to NMOSD leads to more pro-
nounced thinning of the pRNFL and mGCIPL than in
MSON [37, 38]. The distribution of pRNFL thinning also
differs, with NMO-ON preferentially involving the
inferior and superior quadrants, versus the temporal
quadrant which is more typically affected in MS [37].
Patients with NMOSD do not seem to suffer the pro-
gressive pRNFL atrophy that occurs in MS independent of
ON episodes [39], as described earlier, with damage
appearing to be attack-related, although some studies have
shown the mGCIPL to undergo progressive thinning [40].
This seems to be specific for aquaporin4 IgG positive
NMOSD, whereas myelin-oligodendrocyte-glycoprotein
(MOG) IgG positive NMOSD patients demonstrate a
more similar pattern to MS patients [41]. The reason for
this is not clear, and certainly the time course in NMO-ON
and MOG-ON is less well understood than in MSON,
with the relationship between severity of atrophy
observed and loss of visual function also being less well
correlated. Microcystic macular change is also seen more
frequently in NMOSD patients (20–26%) than in MS
patients (1–5%) [37, 42], and INL measurements are
thicker in NMOSD versus MS patients [43, 44]. This may
be a reflection of the severity of optic neuropathy and the
resultant retrograde degeneration. Figure 5 demonstrates
progressive pRNFL and mGCL thinning in a patient with
NMO after right eye optic neuritis.

Fig. 3 Spectral-domain optical coherence tomography (SD-OCT)
macular ganglion cell layer (mGCL) thickness map report in a
healthy asymptomatic 27-year-old female. The report for the right

eye shows normal macular ganglion cell layer (mGCL) density and
thickness (1, 2.22 m 3.45 mm volume scan) after segmentation.

Optical coherence tomography (OCT) in neuro-ophthalmology
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Optic disc drusen (ODD)

ODD are acellular intracellular and extracellular deposits
located in the optic nerve that may become calcified over
time. Whilst superficial ODD can be detected on clinical
examination, distinguishing buried optic disc drusen from
optic disc swelling remains a clinical challenge. Ancillary
tests including fundus autofluorescence, computer tomo-
graphy, fluorescein angiography and B-scan ultra-
sonography are used to help distinguish between the two.
These do have their limitations, however. B-scan ultra-
sonography, for example, whilst traditionally viewed as the
‘gold-standard’ test for detection of buried ODD, is unable
to detect non-calcified drusen or peripapillary hyper-
reflective ovoid mass-like structures (PHOMS) [45]. Reso-
lution is relatively poor, making it difficult to monitor
drusen progression [45]. Furthermore, B-scan ultra-
sonography does not give information regarding the neu-
roaxonal integrity of optic nerve and retinal structures, and
as such does not allow prognostication with regards to
visual outcomes in patients with ODD [46].

OCT, specifically EDI-OCT, has earned its place as not
only a useful complement but as a potential competitor as
the gold-standard for diagnosis and analysis of ODD. Prior
to mainstream use of EDI technology, there was much
variability in the literature with regards to ODD morphol-
ogy on OCT. Early studies focussed on RNFL thickness
differences between ODD and disc oedema [47, 48], but
this was found to be unreliable [49]. Other OCT features
described in the literature included ODD appearing as
highly reflective round sub-retinal structures with well-
defined margins displacing the adjacent tissue [47], and a
‘lazy V’ pattern or ‘lumpy bumpy’ internal contour of the
subretinal hyporeflective space helping to distinguish
between ODD and papilloedema [50, 51]. However, the
hyporeflective space was actually an imaging artefact and a
by-product of poor-penetrance inherent to early generations
of OCT [45].

The improved penetrance afforded by EDI-OCT tech-
nology now enables quantification of drusen size, delinea-
tion of drusen borders and assessment of the integrity of
adjacent retinal structures. The Optic Disc Drusen Studies

Fig. 4 A 36-year-old male with relapsing-remitting multiple
sclerosis (MS) presented with visual complaints and was found to
have a right inferior incongruous visual field defect. The spectral-
domain optical coherence tomography (SD-OCT) macular ganglion

cell layer (mGCL) analysis shows a corresponding pattern of left hemi-
retinal loss. This is indicative of left-sided post-chiasmal demyelina-
tion (left optic tract or radiation), with MRI images confirming left
optic radiation volume loss.

N. Minakaran et al.
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Consortium has published guidelines for the assessment of
ODD [52]. They define ODD as hyporeflective structures
always located above the lamina cribrosa, with a full or
partial hyperreflective margin, often most prominent
superiorly (Fig. 6). Blood vessels, which appear as elon-
gated tube-like structures, are distinguished from ODD as
they lack the hyperreflective signal around them. ODD are

often seen as conglomerates of smaller ODD with internal
reflectivity within the signal-poor core. Hyperreflective
horizontal lines might represent early ODD but should not
be diagnosed as ODD.

EDI-OCT has been shown to have significantly higher
ODD detection rate than B-scan ultrasonography [53].
Furthermore, the size and type of ODD classified by EDI-

Follow-up 2 -
28/09/2017

Follow-up 1 -
28/06/2017

Fig. 5 A 44-year-old female with sero-negative neuromyelitis
optica (NMO) presented with right eye optic neuritis. The spectral-
domain optical coherence tomography (SD-OCT) imaging

demonstrates progressive thinning of the peripapillary retinal nerve
fibre layer (pRNFL) and macular ganglion cell layer (mGCL) after
presentation, shown here at 3 weeks and 3 months post episode.

Optical coherence tomography (OCT) in neuro-ophthalmology
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OCT have been shown to correlate with visual field defects.
Specifically, confluent ODD have been associated with
worse mean deviation scores on visual fields testing [54].
Some studies have suggested that EDI-OCT ODD volumes
correlate with structural optic nerve head damage and
functional deficits among patients [55]. The capability of
EDI-OCT to quantify ODD volume, and additional ability
of OCT to measure neuroaxonal changes in the retina, will
enable the monitoring of ODD progression and potentially
provide guidance with regards to risk factors for vision loss
in ODD patients.

Peripapillary hyper-reflective ovoid structures
(PHOMS)

Peripapillary hyper-reflective ovoid mass-like structures
(PHOMS) were originally described in patients with ODD
[47–49] and were thought to represent precursors or variants
of ODD [54]. However, as explained by the Optic Disc
Drusen Studies Consortium, PHOMS, unlike ODD, are
hyperreflective without a sharp outer margin or hyporeflective
core [52] (Fig. 7). They are neither visible on fundus auto-
fluorescence nor on B-scan ultrasonography, and they can be
found on OCT in patients with papilloedema without ODD
[52]. They are thought to represent disruption of retinal layers
caused by local axoplasmic build-up [45], with the histo-
pathology of papilledema suggesting that PHOMS might
correspond to the lateral bulging of distended axons into the
peripapillary retina [52]. Of note, PHOMS can also be seen in
crowded discs, or “pseudo-papilloedema” and therefore are
not useful as a distinguishing feature for papilloedema.

Idiopathic intracranial hypertension and
papilloedema

Idiopathic intracranial hypertension is a condition of
unknown aetiology, typically associated with obesity,
that can lead to headaches, optic disc swelling and, in some
cases, permanent visual loss [56]. OCT allows accurate and

objective monitoring of this condition, not only with respect
to the degree of optic disc swelling present, but also with
quantification of resultant optic neuropathy.

The OCT pRNFL measurements can be used to serially
monitor the degree of optic disc swelling present over
consecutive visits (Fig. 8), which is a far more reliable and
sensitive method of evaluating change than comparisons of
clinician-assessed Frisén grades [57, 58]. Furthermore,
whilst reduction in disc swelling and pRNFL thickness may
be a result of treatment success or general improvement, it
may also be a result of worsening axonal loss from disease
progression. OCT mGCIPL thickness measurements play a
critical role here for distinguishing between these two
entities. Reduction in pRNFL thickness with preserved
mGCIPL thickness indicates treatment success with pre-
servation of the neuroaxonal structure, whereas reduction in
both indices indicates worsening optic neuropathy and
treatment failure or fulminant IIH.

EDI-OCT may demonstrate PHOMS in papilloedema.
EDI-OCT also enables visualisation of Bruch’s membrane,
and peripapillary deformations of Bruch’s membrane sur-
rounding the neural canal due to a differential pressure
between the retrobulbar optic nerve and vitreous cavity can
also be useful in the diagnosis and management of patients
with intracranial hypertension. In raised intracranial pres-
sure, there can be an upward deflection of Bruch’s mem-
brane towards the vitreous [59, 60] (Fig. 9), and after
treatment there can be normalisation to a downward
deflection of the Bruch’s membrane complex [59, 61]. There
is anecdotal evidence that this can be seen straight after
lumbar-puncture induced lowering of intracranial pressure,
much sooner than fundal appearances of papilloedema, and
indeed even OCT pRNFL thickness changes [62, 63].

OCT is also helpful in differentiating between vision loss
in papilloedema due to optic neuropathy, or due to retino-
pathy such as subretinal macular fluid or choroidal folds.
Decreased vision due to the latter two are generally more
benign and reversible, and treatment may not need to be as
aggressive as is the case in optic neuropathy [64].

Fig. 6 OCT imaging of optic disc drusen (ODD) in a 48-year-old
male. Optic disc drusen (ODD) are visible on fundus autofluorescence
(a) with corresponding morphology demonstrated on enhanced depth

imaging spectral-domain optical coherence tomography (EDI SD-
OCT) (b). ODD are seen as signal-poor structures with a partial
hyperreflective margin.

N. Minakaran et al.
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Lastly, functional overlay is not uncommon in patients
with IIH. OCT analysis of mGCIPL thickness as an
objective marker of established optic neuropathy provides
additional insight, along with the results of other tests such
as kinetic perimetry and visual evoked potentials, as to
whether functional overlay may play a role in explaining
poor visual function.

Anterior ischaemic optic neuropathies (AION)

OCT plays a similar role in the assessment of ischaemic
optic neuropathies as it does in assessment of optic neuritis.
Acutely, optic disc swelling can be diagnosed and quanti-
fied using pRNFL thickness measurements. Within
2 months, 80% of patients subsequently show pRNFL

Fig. 8 A 23-year-old female presented with headaches and was
found to have bilateral optic disc swelling, and after investigation
was diagnosed with idiopathic intracranial hypertension (IIH).
Spectral domain optical coherence tomography (SD-OCT) imaging

demonstrates bilateral perpipapillary retinal nerve fibre layer (pRNFL)
thickening at presentation (a). There was improvement in symptoms
and pRNFL thickening after commencement of acetazolamide and
weight loss strategies at 4 months after diagnosis (b).

Fig. 7 OCT imaging of
peripapillary hyper-reflective
ovoid mass structure
(PHOMS) in a 37-year-old
male who also has optic disc
drusen (ODD). Enhanced depth
imaging spectral-domain optical
coherence tomography (EDI
SD-OCT) shows a peripapillary
hyper-reflective ovoid mass
structure (PHOMS).

Optical coherence tomography (OCT) in neuro-ophthalmology
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thinning, with progressive thinning and thus optic disc
atrophy occurring between months 2 and 4, with stability
typically reached at month 6 [65–67]. As with optic neuritis,
thinning of the mGCIPL has been shown to occur much
earlier than pRNFL thinning. It can occur as early as
2.2 days after onset of symptoms, and thinning of the
mGCIPL density has been shown to be present in 62.5% of
eyes at presentation [68]. Longitudinal assessment of the
mGCIPL layer offers a reliable and objective tool in
monitoring of these patients (Fig. 10). Furthermore, the-
pattern of mGCIPL loss often indicates the degree
and pattern of visual field loss [69–71], which in non-
arteritic ischaemic optic neuropathy (NA-AION) is often
altitudinal.

OCT can also be used to distinguish between a chronic
branch retinal artery occlusion and NA-AION. Whilst both
can cause an altitudinal visual field defect and corre-
sponding pallor of the optic nerve in the post-acute phase,
retinal artery occlusions will cause thinning of the entire
inner retina including the INL, whereas in NA-AION the
thinning will be limited to the pRNFL and mGCIPL. As
retinal artery occlusions require a thromboembolic work-up
and NA-AION do not, it is important to clinically distin-
guish between the two. In clinical practice it is helpful to
compare the visual field with the macular OCT. The ana-
tomical defect seen in the mGCIPL thickness should match
the functional deficit depicted in the visual field.

Compressive optic neuropathies

Compression of the anterior visual pathway most com-
monly occurs at the level of the optic chiasm, for example
by pituitary lesions, but compression of the optic nerve can
also occur elsewhere, for example by meningiomas or in the
orbit by the enlarged muscles of thyroid eye disease. OCT
plays a role, not only in diagnosis and monitoring of

compression, but also in prediction of visual outcomes after
decompression surgery.

Compression causing optic nerve damage can be detec-
ted on OCT earlier than may be visible on fundoscopy. Both
pRNFL and mGCIPL thinning can be detected and quan-
tified on OCT imaging, with mGCIPL analysis being par-
ticularly sensitive for detecting compressive optic
neuropathy. Not only may mGCIPL thinning occur earlier
than pRNFL thinning [72], but in some studies it has also
been shown to occur before standard automated perimetry
changes [73, 74]. A hemianopia on perimetry can present as
a hemi-macular atrophy on the OCT.

The pattern of pRNFL and mGCIPL loss may be helpful
in detecting some compressive optic neuropathies. In pre-
chiasmatic unilateral optic nerve compression, asymmetry in
pRNFL and mGCIPL thickness between eyes gives a clue to
the location of the compression. Lesions compressing the
optic chiasm superiorly or inferiorly predominantly compress
the decussating nasal fibres, resulting in retrograde RNFL
loss on the nasal and temporal sides of the optic disc. This
can be identified clinically as bow tie or band optic atrophy
[75, 76]. Whilst multiple studies have shown patients with
band atrophy to have pRNFL loss in all 4 quadrants around
the optic disc, not just the horizontal band [77–81], there is
greater proportional thinning nasally and temporally in
patients with bitemporal hemianopia from chiasmal com-
pression [78] (Fig. 11). The pattern of mGCIPL loss is more
consistent, with binasal thinning occurring typically in
chiasmal compression [73, 82]. Homonymous mGCIPL
thinning is seen in optic tract and lateral geniculate nucleus
injuries, not only from compressive lesions but also from
vascular ischaemia or demyelination [83]. Post-geniculate
lesions can also lead to homonymous mGCIPL thinning
through trans-synaptic retrograde degeneration, but this OCT
pattern does not occur acutely and may take over a year to
develop [84].

Fig. 9 A 47-year-old male
presented with headaches and
was found to have bilateral
optic disc swelling, after
investigation deemed
secondary to raised
intracranial pressure.
Enhanced depth imaging
spectral-domain optical
coherence tomography (EDI
SD-OCT) demonstrates upward
deflection of Bruch’s membrane
(arrows).
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OCT can be helpful in differentiating compressive
optic neuropathies from normotensive glaucoma. In
glaucoma, pRNFL thinning tends to be vertical and
the mGCIPL thinning tends to respect the horizontal meridian
[82], distinct from that seen in chiasmal compressive lesions.

OCT may potentially play a role in monitoring and
management decisions in paediatric intrinsic optic path-
way gliomas, which are typically managed conservatively
with treatment initiated on documented visual decline.
However, reliably measuring visual function using visual

Baseline - 03/06/2016

Follow up 2 -
28/07/2016

Follow-Up 1 -
30/06/2016

Fig. 10 A 70-year-old female presented with headache and reduced
vision in the right eye. She was diagnosed with right arteritic anterior
ischaemic optic neuropathy (A-AION) due to giant cell arteritis
(GCA). Spectral domain optical coherence tomography (SD-OCT)

imaging demonstrates progressive thinning of the macular ganglion
cell layer (mGCL) from onset, shown here at 3 weeks and 8 weeks
post presentation.
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acuity and visual fields in young children can be difficult,
and optic nerve glioma size on MRI is poorly predictive of
visual function [85]. OCT pRNFL thinning has been
shown to be sensitive and specific for vision loss in this
group of patients [86], although this finding has been
challenged [87]. Further research is needed to fully

support the use of longitudinal OCT assessments to aid
therapeutic decision-making.

OCT is helpful in assessing visual dysfunction and pre-
dicting post-surgical visual outcomes in compressive optic
neuropathies. Both pre-operative pRNFL thickness [62, 88]
and mGCIPL thickness [74, 89, 90] should be considered,

Fig. 11 A 64-year-old male with bilateral established optic neu-
ropathy secondary to a pituitary adenoma causing compression of
the optic chiasm was followed up in clinic. The spectral-domain

optical coherence tomography (SD-OCT) peripapillary retinal nerve
fibre layer (pRNFL) report shows bilateral pRNFL thinning, especially
temporally.
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and one parameter is not necessarily superior to the other as
prediction of visual outcomes is multifactorial, depending
also on lesion location, duration and severity of compres-
sion [46]. Both have been shown to correlate with visual
field loss and visual outcomes post-surgical decompression,
with lower chance of complete visual recovery when there
is greater pRNFL and mGCIPL thinning.

Optical coherence tomography angiography (OCTA)
in neuro-ophthalmology

OCT technology continues to improve and evolve, and the
availability of optical coherence tomography angiography
(OCTA) is one such advancement. OCTA provides non-
invasive imaging of the perfused vascular network of the
neurosensory retina and optic nerve head. Technical details
are outlined in Table 3.

In neuro-ophthalmology, OCTA assessment of the peri-
papillary radial capillary network, a layer not visible on
traditional fluorescein angiography [91], can be useful.
Peripapillary radial vessels are located in the RNFL,
superficial to the inner retinal plexus. These vessels are
susceptible to fluctuations in intraocular pressure and their
density has been shown to correlate with RNFL thickness
[92]. For instance, in glaucomatous optic neuropathy,
reduced perfusion, reduced vessel density and pre-laminar
blood flow of the optic nerve head correlate with pRNFL,

mGCIPL, visual field mean deviation, and visual field index
[93]. Reduced peripapillary radial capillary network perfu-
sion has been demonstrated in demyelinating optic neuritis
[94] and ischaemic optic neuropathies [95]. The difficulty
here is that OCTA is not reliable in a swollen disc. More-
over, partial reperfusion of peripapillary vascular flow has
been linked to visual acuity improvement in NA-AION
[96]. The association of absent focal perfusion alongside
superficial peripapillary capillary dilation has been
advanced as a potential diagnostic sign for arteritic AION
[97]. In established cases of Leber hereditary optic neuro-
pathy and autosomal dominant optic atrophy, reduction in
peripapillary perfusion is consistently observed [98, 99].

Conclusion

OCT imaging has revolutionised neuro-ophthalmic practice
and with ever advancing technology the scope for further
applications will continue to expand. We have described its
application in the diagnosis, monitoring and prognostication
of a number of more common neuro-ophthalmic conditions,
including demyelinating, inflammatory, ischaemic and
compressive optic neuropathies, optic disc drusen and
raised intracranial pressure. This list is not exhaustive,
and there are a multitude of other neuro-ophthalmic con-
ditions that also benefit from the capabilities that OCT
imaging affords with respect to diagnosis and management.
The use of computer-generated information, however, must
always be reviewed for potential inaccuracies or artefacts,
correctly and critically interpreted, and integrated into the
clinical context. This is an exciting area in both neuro-
ophthalmic research and clinical practice, and as OCT
technology continues to improve, it will undoubtedly
enhance our understanding of the pathophysiology of
neuro-ophthalmic diseases in the future.
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